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INTRODUCT 1ON
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1.1 PLASMOIDS

Plasmoids can be described as a group of electrons and lons that
propagate as a unit through vacuum. [In their present conception they consist of
an expanding halo region, carrying return current and bearing a slight charge
imbalance, and an equilibrium core region that propagdates like a pinched chdrged
particle beam. This model was first suggested by T. Lockner of Sandia. These
parts are illustrated in Figure 1., Since they are a type of charged particle
beam, they can be generated with higher efficiency and deposit their energy over
a deeper distance in matter than laser beams. This makes plasmoids attractive
for defense applications: however, the structure, formation, and propagatlion of
plasmoids in a space environment are not known at present. Theory and
one-dimensional simulations aimed at fiﬁdlng the core structure of plasmoids by
using variational principles have been successful. This report documents the
progress made in this first phase of research. A proposed second phase of
research will use similar techniques to model the three-dimensional formation

and propagation of plasmoids in a space environment.

1.2 PROGRESS IN PHASE-ONE RESEARCH

The first phase of research was aimed at understanding the core
equilibrium of a plasmoid as being the result of a relaxation process. In this

model the plasmoid was a minimum energy structure, and internal structure could

be found by varliational calculus. This model was suggested by the success of

such methods in magnetic fusion work (Reference 1).

Progress has been made in the theory of plasmoid core equilibria of

three types (using cylindrical coordinates with z being the equilibrium axis):

(1) nonrotational equilibria,

(2) rotational equilibria with no axial magnetization
(Vg#0 Jy=0), and

(3) rotational, axially magnetized equilibria (Vg4#0 J,#0

leading to a B, field).

1-1

DT N NN AL St L S TAc iy T4 i WA To P BT RS T ag
A e ._-(_.r__-..‘)‘. - .\.’._ o ._).. ,-_)\" PP .,"-,\__:J,. s J&J,)»" ) ,‘\',(-N) f\{\.r\ .‘.I\:( < \‘M.’-{;,‘, N Ta
PN TN N PO LA RNt ayt Ayt T A" "y, IR G S ¥ AMW



o e Ao ate man San Bee s Al -Sie Siie MiteAile iR iall L cah eal wain ol unt Snlb Ml Sal g 2 el Gl Bed i Sl el ek Al Sl BaiC Sal doddind WUWTW LI WIWIU L oMU WL TUWU WS YL W
~ o > T~ y Tl P A Ao ot 1
L3 a ] Ay Lo A - > "

r
0
-r _:"-

5% 1‘;

o4

A
' .

.«

&%

o
»

7 T

Expanding halo

Pinched Core

Direction of
Propagation '

Figure 1. A plasmoid model that was first proposed by Tom Lockner

of Sandia Hational Laboratories.
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The wvariational method, called the method of Lagrange multipliers
(Reference 2), was applied originally in one Lorentz frame. This frame of
reference, called the z-pinch frame, is a frame where the core equilibrium is
charge neutral and electrcns and ions move past each other, so their currents

add. The plasmoid core equilibrium can, therefore, be understood as a Lorentz

NARARAAL N

transformed 2z pinch. However, the variatlional principa! originally was

|
formulated in the z-pinch frame only and assumed similar density profiles for !

.

electrons and ions. A generalized variational principle, valid in all Lorentz

frames and requiring similar profiles for both electrons and lons in all frames,

PRI
e
e

has now been formulated. The principal of Lorentz invariance strongly indicated

the form of the wvariational problem and the Lorentz invariant variational

.

7L
E D 4

principal was found to predict the three types of equilibria mentioned earlier.

P

4yt

Simulations of the three types of equilibria discussed were performed
assuming rotational and axial symmetry; that is, effectively one-dimensional.
The simulations consisted of equilibria initialized in steady-state and
nonequilibrium configurations that were allowed to relax to equilibrium. The

simulations demonstrated that the equilibria predicted by variational theory did

exist and were unique end states of the relaxation process. Simulations also
demonstrated that relaxation to final profiles was slower than the expected ion
trainsit time timescale, and instead proceeds according to a Bohm diffusion

timescale.

1.3 PLASMOID EQUILIBRIA AND Z-PINCH FRAME

Before proceeding to the body of this report it is useful t6 briefly
consider the equations of plasmoid equilibria. A simple method to generate
plasmold equilibria, which also aids in understanding them, is to use the two
dimensional Virial Theorem (Reference 3). This theorem gives necessary
conditions for the existence of an infinitely long rotationally symmetric,

pinched equilibrium. This condition is:

IZ/CZ-Q2 = 2NkT (1.1)

where 1 is the total current in the equilibrium, Q is the total charge per unit
length, 2NkT 1is the total thermal energy per unit length and ¢ is the speed of
light. This condition can be nderstood as a generalization of the Bennett

pinch condition (Reference 4).

1-3
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The quantities on both sides of Equation (1.1) can be shown to be
Lorentz invariants. Thus, a radial equilibrium in one frame can be shown to be
a radial equilibrium in all other Lorentz frames. This property of Lorentz
invariance was used to create plasmoid beam equllibria in one frame, a frame in
which both electrons and ions moved together at nearly the speed of light, by
setting up a4 charge neutral (per unit length) z-pinch in a frame where electrons
and lons moved slowly in opposite directions at equal and opposite velocities

po where po<<1. In this z-pinch frame Equation (1.1) becomes,

L /C4 =1 4)C% - Q% =2NkI = 2NkT, (1.2)

where the primed quantities are transformed Iinto the z-pinch frame. The
plasmoid equiiibrium was then merely a caplidly moving z-pinch. The electron and

ion densities for equilibrium are then related by the ratio

ni/ne =Y1/Ye (1'3)

where nj and ne are the electron and ion densities respectively and where
yi and Yy, are the relativistic gamma factors for the ions and electrons

respectively, y = (1 - pz)'l/z where B = v/c.

One type of equillbria that was found was that of a Bennett profile
equilibrium with electrons and ions having similar profiles. The profile, were

solutions to the set of coupled equations:

dne neneZ IS , 'i
- g:_ kTe = - JO ne[(pe -1 - ;— (pipe - 1] dx (1.4a)
e
dni nl_.*u-:Z bN ; Yi
- _(;x_ kT, = - )o n ey -1 - Y— (p; P, - DI dx (1.4b)
i

where kT, and kTi are the transverse temperatures of electrons and lions,

Z

x = r‘, and where Pe and p; are the normalized electron and ion velocities,

respectively. The solutions are found to be

1.4
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n_ = nao/(1 - (x/a)4)* (1.5)

where n is the density on axis for either specic and where the Bennett

ao
radius, a, is defined as:
; 2kT Yf
d.{ - - a 194 (1,6)
1 - -1
ne (YiYe( pepi) )n

ao

It was shown further that the quantity y;ye (l-pjpe) could be expressed

and ¢, are equal to tanh™*p; and tanh-*

as cosh (e;-g.) where e

c:i P&
respectively, and that this quantity was itself invariant between frames, as was
YekTg/ng, so that the Bennett radius in all frames was equal to the value

it assumed in the z-pinch frame:

Zu [ .
g o KT (1.7)

nen'p'?
o o

where lﬂo and kTé are the common densities and transverse temperatures of the
. . . . 2
electrons and ions in the z-pinch frame. The quantity Zpo becomes equal to

cosh (g5 - ¢ in the limit that g,, the drift velccity of the electrons

e)
and ions in the z-pinch frame, is small. The slow drift speed in the z-pinch

irame 1s one of the initial simplifying assumptions of the model.

It has been observed in simulations of plasmoid equilibria of general
initial profiles that electron and ion profiles evolve very quickly to the same
shape if their initial profiles are dissimilar. Also it has becn observed that
once the profiles of electrons and lions become similar, there is a slower

evolution to a Bennett profile. This is true regardless of the initlial profiles

for the plasmoids.

[t will be one purpose of this report to eaplain why similar Bennett
profiles for electrons and ions should be expected for any nonrotating plasmoid

after many ion betatron periods. The reasons for this expectation, it will be

1-5
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> shown, involve the tendency for systems to seek their lowest accessible enerqy

T f i i

o state and also their tendency to move to a stdate of maximum entropy. Possible

Y

final states for beams with initial cannonical angular momentum are also of

interest and will be discussed.

The method chosen for investigating these equilihria iscues will be a
variational approach. Variational principals have been shown to be powerful
techniques for predicting the end conditions of very complicated systems. They
have found liacreasing use in magnetic conflnement fuslion theory to predict the

results of experiments (Reference 1).

Because of its compactness we will usc fluld theory to describe beam
equilibria and their evolution. The same results could be obtained through
Vlasov theory, but not without the loss of simplicity and easy understanding.

1.4 BASIC ASSUMPTIONS OF RELAXATION MODELS

When a system evolves to maximize or minimize some global quantity the

system i said to "relax". The relaxation of systems to minimum energy states
or maximum entropy is observed often in everyday life. The movement of water in
a sink to assume a common lowest level when more water ls added is an example of
energy minimization. The diffusion of heat in a frying pan until its surface is
a unifora temperature can be thought of as a maximization of entropy. It seems
reasondable to expect similar behavior in non-everyday systems; however, in
everyday systems the mechanisms for relaxation and dissipation are clearls
understood. The production and subsequent phase-mixing and damping of water
waves allows water to reach a common level and the process of heat conduction by
microscopic processes causes the frying pan tv relax to a uniform temperature.
Therefore, when we consider the relaxation of intense particle beam equilibria
we must consider what process or processes will lead to dissipation and
increases in entropy. In beam equilibria the particles will move in a
complicated system of interweaving orbits. Actual close approaches by
individual particles to one another so as to strongly perturb each others motion

will he rdare; however, strong oscillations of local space-charge density, caused

1-6
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{; by th collective interaction of pdarticles, can strongly perturb the motion of
}: particles, both in groups of pdrticles pdssing through edach other (4 two stredm
- instability) at high relative speed or by strong chdrge sepdrdtions. These
i: oscillations can lead 1o rapid exchange of energy dand mutudl perturbations of
:i: orbits among particles.
t::
. This In turn will lead to a more uniform spredad of enerqgy damong
;ﬁ: particles and e more diffuse and more thoroughly mixed bedam profile. The
:ii diffusion amona particles of eneray and the diffusion In space of particle
:S: orbits by electrostatic and electromagnetic instabilities can cause changes in

the beam profile to some preferred or more stahle state, [t is these observed
instabilities that will be assumed to lead to relaxation. These oscillations
can be expected to have frequencies of the order of the beam plasma frequencies
or the particle betatron frequencies. The frequencies dre characteristic of

collective particle motion in the fields of the beam

S —— (1.8)
*(lMld“C

where Hl is the mass of the particles.

Detailed analysis of the instablilitlies is very complicated for general
beam profiles and will not be necessary for our purposes. We will merely assume
that they will exist, will create disorder, and dissipate enerqy. It will be
dssumed that the oscillations form waves that will move outward and be lost at a
very large radius. The loss of information and enerqgy from the system will be

considered irreversihle.

Because we are concerned with the evolution of radial profiles we will
assume the heam equilibria qare initicily uniform in the z-direction and that
this condition 1s maintz2ined throuahout the equilibrium evolution to a final
state. We will thus not allow wave propagation In the Z-direction. This wi
have the effect of not allowing two stream linstabilitlies to grow from the
counterstreaming of the electrons and ions In the z-airection. Because this
counterstreaming is assumed to be weak and thus, not a large source of free

energy, this should not be a had approximation.

1-7
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Certaln quantities are always conserved, even in complicated systems,
when a system relaxes. Such quantities as total charge per unit length, current
in the z-direction and particle number (per unit length) will be assumed to be
unchanged by the relaxation. The conservation of current being consistent with

our approximation of uniformity and non-propagation of waves in the z-direction.

Therefore, we will assume that collective oscillations on the order of
the betatron frequencies of the pdrticles will provide a mechanism for
increasing entropy In the heam and removing fee enecqy. The beam will thus
minimize its free energy and maximize its entropy. However, the final state of

the beam will have the same maqnetic energy per unit length.
1.5 OVERVIEW

In the second chapter of this report the theory of relasxation of
plasmold equilibrium in two-dimensions will be discussed. It will be shown that
this relaxation can be studied in all frames through Lorentz invariant energy
constraints, that is equivalent to a relasation in the charge neutral z-pinch
frame. Because of this the z-pinch frame will be used for the majority of
theory dand simulations. In the third chapter, results of simulations will be
compared with theory. A final chapter will summarize the results of this

research.

1-9
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SECTION 2
THE THEORY OF RELAXED PLASMOLD EQUILIBRIA

2.1 RELAXATION IN THE Z-PINCH FRAME

The simplest pldace to demonstrate relaxation of a plasmoid to

equilibrium is in the z-pinch frame. However, the basic model of plasmoid

N -.“r"

equilibrium requires lorentz invariance, so that a complete theory of reldasation

v

should apply In all frames.

One of the key assumptions that one makes in the z-pinch frame to
obtain an equilibrium 1is the assumption of similar density profiles for
electrons and lons. In the z-pinch frame this assumption is easy to justify on
the grounds that this minimizes the electric field energy, since all charge
densities wvanish in the z-pinch frame for similar profiles. However, the
assumption of similar profiles does not result in the vanishing of electric
fields in other lLorentz frames because the charge densities are shifted by
differing gamma factors. Therefore, one way to make the Lagrange minimization
Lorentz invdriant is to find out if similar profiles for electrons and lons 4dre
required for an equilibrium or are just a convenlent assumption. To do this we
will reexamine the variational process in the z-pinch frame for a non-rotating

plasmoid and see if anything crucial has been left out.

The wvariational problem that applied in the z-pinch frame, where

.j electrons and ions were assumed to have similar profiles, could be written:
~,
K .
> B
- = /] — + Anln(n) 2ardr , (2.1)
& |1

el
y 4 L 3

where B“/8m is the magnetic energy and n is the density and nln(n) can be

[

considered a thermodynamic entropy. The quantity A is a Lagrange multiplier

(Reference 2). The condition of magnetic energy being minimized while entropy

is kept constant yields the condition,
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0
;{ where A, Is the vector potential and where we consider 0J = eun v, and we
’;i consider v, constant.
5

This yields the equation

evZAL + A Iln(n) = 0 (2.3)
and its derivative
ev nB. = kT an . , (2.4)
PN
dr
2.2 THE LLORENTZ GENERALIZED VARIATIONAL PRINCIPLE

This last equation is merely the equation for a Bennett pinch
(Reference 3) without rotation. The generalized variational principle takes the

form

on. kT,
F I R S ln(nikTi) + Ay nekTe 1n (ne kTe) (2.5)

Ll 2, 2 2 : ¢ a2y 2
+ Agng - (nipi) RN (nepe) J o+ Ag(p /)

where E is the electric field, y; and y, 4are the electron and ion gamma

factors, respectively, 5; and are the elcctron and lon velocity

Pe
normalized to c¢, and pZ - Jz/cZ is the electromagnetic four current. This
generalization means that the Lorentz invariant form of electromagnetic field
strength is minimized while Lorentz invariant entropies and densities for both
species and the total Lorentz invariant charge density squared are all kept
constant. The results of this variation of both ne and n; independently,
with the usual vanishing of surface terms, can be expressesd as:
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+ A, 2e (ni n.nPy neéepi) 0 (2.6)
and cely - A )« A, kT Inn KT+ A2(n -2p%n ) |
2 e e € € e e e
+ a2 {n -n . -n p “enpp) =0 (2.7)
e 1 ee 1eli

Ye = ;
nevi and thus, similar profiles. Similar profiles for electrons and ions, \

The presence of cross terms in edch equation requires nj
thus, are required by minimization of £4-B¢ and simultaneous conservation of
particle number and total charge. Differentiation leads to the equilibrium
equation Equations 1.4a and 1.4b.

2.3 ROTATIONAL EQUILIBRIA AND THE GALACTIC MODE

The inclusion of rotation in the formalism is accomplished by the f

rotation potential for each specie

2
£ Vs
syp=m ) Slar, (2.8)
) r
2o=m_ — dr' . (2.9)
0 r

where m; and m_ and Vui and Vve are lon and electron masses in the frame

e

of interest and rotational velocities respectively. It should be noted that
ni?; and n. 2, are Lorentz invariant. Inclusion of strict angular
momentum conservation, it should be noted, results in unphysical equilibrium
when coupled with nonzero temperature; only uniform density, cosmos filling
plasmoids are allowed. However, inclusion of nj®; and n.e, will result

in a general class of rotating equilibria.

The galactic rotation mode results when the condition

A a2 aw . (2.10)
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is applied. This condition occurs when the equilibrium is required to be
insensitive to changes In the entropy or temperature of the species. The
rotational velocity profile which results in Figqure 2 is similar to that seen in
galaxies (Reference 5). Some veloclity profiles seen In galaxies are shown in

Figure 3. The galactic mode velocity profile seen in Figure 2 can be written

as,
Vo(r/d)
VU :—/—————-— , (2.11)
V1+r4/d../.
where Vg, Is an asymptotic equilibrium velocity. The conditions for the

derivation of the galactic mode, an insensitivity to temperature, indicate a
condition of nearly circular pdarticle orbits. For the more realistic case of
very noncircular orbits, the conservation of angular momentum for individual
particles will cause a sharp peak to occur in the V, profile at smaller radii
as particles speed up. This can be included by an additional term in Equation

2.11.

VO( 1+r/a)
Va = —_— rr>a , (2.12)
/1+r2/a2
V. =vZV r/a r<a . (2.13)
9 0
2.4 AXIALLY MAGNETIZED EQUILIBRIA

The case of rotational motion that produces current, and from this axial
magnetization, can be examined by including a Lorentz invariant,

j 9% - A¢ 2nrdr (2.14)

while eliminating the invariants assoclated with entropy. It has been seen that
the introduction of axial magnetic flux, of comparable energy to thermal energy,
tends to cause a relaration that is determined by field quantities rather than

matter: for this reason thermodynamic entropy seems to be unimportant.
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similar to thdt «een in galaxies.
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f:f: In the z-pinch frame this reduces to an integral over A only and

o

Iy Lagrange minimization gives the equation for equilibrium (Reference 6).

S
\ > >
J=XxA (2.15)
In this case both daxial current dand magnetic field assume the form of
a Bessel function,
r
J =B =7 (=) . (2.16)
z z 0'a
-

o

o

..-\ .
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SECTION 3
SIMULATIONS OF STEADY-STATE AND RELAXING EQUILIBRIA

ll
.
-

I'
[

»
L

5

.

oy

3.1 BASIC REQUIREMENTS FOR SIMULATIONS

.l

LG %5 5%

> x, r
,'_";1

Simulations of the three types of eqguilibria discussed were

performed.

The simulations consisted of equilibria initialized in steady-stdate

4 &
e

e
Y

and nonequilibrium confiqurations that were allowed to relax to equilibrium.

e
Sy
2R,

The initlalizing of steady-state fields and currents in two-dimensions

>

In an electromagnetically self-consistent manner proved more difficult than

oy
.

v
*x

E;} anticipated. However, once numerical integrations over the actual particle

uj charge densities and current were used, Instead of idealized analytic ones,
® simulations could be started without sevére electromagnetic turbulence. Berause
E;E of the fully electromagnetic nature of the code MAGIC (Reference 7), the

~

limitation on the timestep was determined by the Courant condition

<«

Sl
'l
'
s a 4N

at > v 7 L

(3.1)
c

where 2 is the dimension of the smallest cell. This required thermal speeds for

ions and electrons tnat were close to the speed of .ight

v =c/3

th (3.2)

This allowed significant particle dynamics to occur within a reasonable number
of timesteps.

3.2 SIMULATIONS OF NONROTATING EQUILIBRIA

Simulations were performed in the z-pinch frame for reasons of

simplicity. Simulations of nonrotating equilibria were performed first. The

Bennett profile was observed to be stable tor many thermal transit times:

d
T = —

= ’ (3.3)
Yen
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e where a is the Bennett radius.
-';-'
N .
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x 2nn e“p*
» ’\‘. 0]
‘.,l"‘

where m s the

of about
in steady-state, as can be

observed to be strongest in

A nonequillibrium,

relax to equilibrium. The

velocity profile,

LN

originallv

L b2 IS

! £
"3 ;".d ® '1'71'

v:x"v‘)

oy
A

.‘..&”,

PSRN

steady-state and

.
G h Y S
LN R RN

ion or electron mdss,

is the drift velocity normalized to the speed of light.

both steady-state anrd nonequilibrium configurations.
consistent with a Bennett-like profile,
including the effect of large radial excursions of particles.

predicted galactic mode as is

nonsteady-state

L r‘..r L4 -".‘1 -’ ﬁl ~l 1'."'\1 ,\v *."\ ‘l"\' “.v \‘- N- » 5- N.
e T VT s SR KK a0 !

In Gaussidn units,

this is written:

(3.4)

n, 1> the central number density, and ¢

A level of fluctuations

10% of the mean magnetic field and pdrticle density wds observed even

seen in Figqure 4. Electrostatic oscillations were

the center of the pinch.

nonrotating beam was also simulated and allowed to

equilibrium appeared to approach the Bennett state

after many thermal transit times. Density profiles of the initial and final
states are shown in Fiqure 5. This period of diffusion was much longer than
expected. The expected time for significant diffusion to occur was a few
thermal transit times.

3.3 ROTATING, NON AXIALLY MAGNETIZED EQULIBRIA

The case of rotating equilibria was simulated by being initialized in

A steady-state rotational
was arrived at by

This modified the
shown

in Figure 6. The rotating

nonequilibrium plasmoid was observed to relax to a rotation and density profile

close to the previously simulated steady-state.
3.4 AXIALLY MAGNETIZED EQUILIBRIA

The case of rotation with axial magnetization was simulated in both

cases. An

approximately Bennett- or

Bessel-function-shaped profile with a modified galactic mode was observed for

3-2
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Figure 6. ©- velocity versus radius from MAGIC simulations at (A) initial
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with only a small amount of diffusion.
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the steady-stdate rotation profiles in both cdses. As shown In figure 7, the
initial ¢ and axilal magnetic field profiles for an dpproximate steady-state
A% profile were preserved dfter many particle transit times with only minor
v, ' changes. The final stdate of a nonsteady-stdate initial profile also appeared to
SN

:.-::. relax to this stdte, though the initially nonsteady-state profile was observed
G

to have reglons of axigal magnetic field reversal in late times. In generdl, the

F axially magnetized state took longer to relax than those states without awial
4

magnetizaton.
3.5 RLLAXATION TIMES

Diffusion from uniform profiles to Bennett or Bessel function steady-state
profiles took much longer than the predicted thermal transit time. Instedd, the

diffusion timescale appeared consistent with a Bohm diffusion time (Reference

S):

)
oe]
t
-
[0AN
¢ '0.
w
v

R 8

This is on the order of 100 thermal transivt vimes. To test this g simulation
wds run with the same Bennett radius, but with higher drift velocity, thus
giving a shorter Bohm time. Signs of enhanced diffusion were ohserved: however,
much longer simuldtions would have to be run to give d-finitive proof that the

Bohm time in fact controls the diffusion process.
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SLCTION &4
SUMMARY AND FUTURL WORK

The program of theory and simulations has made great progress.
Steady -state equilibria of three basic types have been ldentifled theoretically
and verified with simulations. The theory that & lorentz invariant variational
problem could predict relaxed, robust plasmoid core equilibria hds been
verified. In addition, the relaxation process has heen observed to occur for
these three cases and its timescale has been approsximately chdracterized. This
proaress can serve as a foundation for an expanded effort to define plasmoids in
three dimensions as well as address the problem of propagation of plasmoids

across magnetic fields.
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